フーリエ級数の公式
(π/2)sinh (π-x)=sinh(π){1sinx/(1^2+1) + 2sin2x/(2^2+1) + 3sin3x/(3^2+1) + ・・}
( 0 < x < 2π)
に作用素∫(0〜p) e^(-x)を作用させて次式を導出した。
[p=2π]
● 1/(1^2+1)^2 + 1/(2^2+1)^2 + 1/(3^2+1)^2 + 1/(4^2+1)^2 + ・・・
=-1/2 + (π/4)(e^(2π)+1)/(e^(2π)-1) + π^2・e^(2π)/(e^(2π)-1)^2
または萩L号で表現すると次となる。
●(n=1〜∞) 1/(n^2+1)^2=-1/2 + (π/4)(e^(2π)+1)/(e^(2π)-1) + π^2・e^(2π)/(e^(2π)-1)^2
[p=π]
● 1/(1^2+1)^2 + 1/(3^2+1)^2 + 1/(5^2+1)^2 + ・・・=π/8 - (π/4)/(e^π+1) - (π^2/4)e^π/(e^π+1)^2
● 1/(2^2+1)^2 + 1/(4^2+1)^2 + 1/(6^2+1)^2 + ・・・=-1/2 + π/8 + (π/4)/(e^π-1) + (π^2/4)e^π/(e^π-1)^2
または萩L号で表現すると次となる。
●(n=1〜∞) 1/((2n-1)^2+1)^2=π/8 - (π/4)/(e^π+1) - (π^2/4)e^π/(e^π+1)^2
●(n=1〜∞) 1/((2n)^2+1)^2=-1/2 + π/8 + (π/4)/(e^π-1) + (π^2/4)e^π/(e^π-1)^2
[p=π/2,3π/2]
● 1/(1^2+1)^2 - 3/(3^2+1)^2 + 5/(5^2+1)^2 - 7/(7^2+1)^2 + ・・・
=(π^2/2){e^(7π/2)-e^(5π/2)}/(e^(2π)-1)^2 - (π/8){3πe^(3π/2)-πe^(π/2)}/(e^(2π)-1)
● 1/(2^2+1)^2 - 1/(4^2+1)^2 + 1/(6^2+1)^2 - 1/(8^2+1)^2 + ・・・
=1/2 - (π^2/2){e^(7π/2)+e^(5π/2)}/(e^(2π)-1)^2 + (π/8){(3π-2)e^(3π/2)+(π-2)e^(π/2)}/(e^(2π)-1)
萩L号で表現すると次となる。
●(n=1〜∞) 1/((2n-1)^2+1)^2
=(π^2/2){e^(7π/2)-e^(5π/2)}/(e^(2π)-1)^2 - (π/8){3π・e^(3π/2)-πe^(π/2)}/(e^(2π)-1)
●(n=1〜∞) 1/((2n)^2+1)^2
=1/2 - (π^2/2){e^(7π/2)+e^(5π/2)}/(e^(2π)-1)^2 + (π/8){(3π-2)e^(3π/2)+(π-2)e^(π/2)}/(e^(2π)-1)
[p=π/3,5π/3]
● 1/(1^2+1)^2 + 2/(2^2+1)^2 - 4/(4^2+1)^2 - 5/(5^2+1)^2
+ 7/(7^2+1)^2 + 8/(8^2+1)^2 - 10/(10^2+1)^2 - 11/(11^2+1)^2 + ・・・
= (π^2/√3){e^(11π/3)-e^(7π/3)}/(e^(2π)-1)^2 - (π^2/(6√3)){5e^(5π/3)-e^(π/3) }/(e^(2π)-1)
● 1/(3^2+1)^2 - 1/(6^2+1)^2 + 1/(9^2+1)^2 - 1/(12^2+1)^2 + ・・・
=1/2 - (π/6){e^(5π/3)+e^π+e^(π/3)}/(e^(2π)-1) + (π^2/18){5e^(5π/3)+e^(π/3)}/(e^(2π)-1)
- (π^2/6){2e^(11π/3)+e^(3π)+2e^(7π/3)+e^π}/(e^(2π)-1)^2
萩L号で表現すると次となる。
● (n=1〜∞) (-1)^(n+1){(3n-2)/((3n-2)^2+1)^2 + (3n-1)/((3n-1)^2+1)^2}
= (π^2/√3){e^(11π/3)-e^(7π/3)}/(e^(2π)-1)^2 - (π^2/(6√3)){5e^(5π/3)-e^(π/3) }/(e^(2π)-1)
● (n=1〜∞) (-1)^(n+1)/((3n)^2+1)^2
=1/2 - (π/6){e^(5π/3)+e^π+e^(π/3)}/(e^(2π)-1) + (π^2/18){5e^(5π/3)+e^(π/3)}/(e^(2π)-1)
- (π^2/6){2e^(11π/3)+e^(3π)+2e^(7π/3)+e^π}/(e^(2π)-1)^2
[p=π/4,3π/4,5π/4,7π/4]
● 1/(1^2+1)^2 + 3/(3^2+1)^2 - 5/(5^2+1)^2 - 7/(7^2+1)^2
+ 9/(9^2+1)^2 + 11/(11^2+1)^2 - 13/(13^2+1)^2 - 15/(15^2+1)^2 + ・・・
= (π^2/(2√2)){e^(15π/4)+e^(13π/4)-e^(11π/4)-e^(9π/4)}/(e^(2π)-1)^2
+ (π^2/(16√2)){3e^(3π/4)+e^(π/4)-7e^(7π/4) - 5e^(5π/4)}/(e^(2π)-1)
● 2/(2^2+1)^2 - 6/(6^2+1)^2 + 10/(10^2+1)^2 - 14/(14^2+1)^2 + ・・・
= (π^2/4){e^(15π/4)+e^(11π/4)-e^(13π/4)-e^(9π/4)}/(e^(2π)-1)^2
+ (π^2/32){5e^(5π/4)+e^(π/4)-7e^(7π/4)-3e^(3π/4)}/(e^(2π)-1)
● 1/(1^2+1)^2 - 1/(3^2+1)^2 - 1/(5^2+1)^2 + 1/(7^2+1)^2
+ 1/(9^2+1)^2 - 1/(11^2+1)^2 - 1/(13^2+1)^2 + 1/(15^2+1)^2 + ・・・
= (π/(4√2)){e^(7π/4)+e^(π/4)-e^(5π/4)-e^(3π/4)}/(e^(2π)-1)
+ (π^2/(2√2)){e^(15π/4)+e^(9π/4)-e^(13π/4)-e^(11π/4)}/(e^(2π)-1)^2
+ (π^2/(16√2)){3e^(3π/4)+5e^(5π/4)-7e^(7π/4)-e^(π/4)}/(e^(2π)-1)
● 1/(4^2+1)^2 - 1/(8^2+1)^2 + 1/(12^2+1)^2 - 1/(16^2+1)^2 + ・・・
=1/2 - (π/8){e^(7π/4)+e^(5π/4)+e^(3π/4)+e^(π/4)}/(e^(2π)-1)
+ (π^2/32){7e^(7π/4)+5e^(5π/4)+3e^(3π/4)+e^(π/4)}/(e^(2π)-1)
- (π^2/4){e^(15π/4)+e^(13π/4)+e^(11π/4)+e^(9/4)}/(e^(2π)-1)^2
萩L号で表現すると次となる。
● (n=1〜∞) (-1)^(n+1){(4n-3)/((4n-3)^2+1)^2 + (4n-1)/((4n-1)^2+1)^2}
= (π^2/(2√2)){e^(15π/4)+e^(13π/4)-e^(11π/4)-e^(9π/4)}/(e^(2π)-1)^2
+ (π^2/(16√2)){3e^(3π/4)+e^(π/4)-7e^(7π/4) - 5e^(5π/4)}/(e^(2π)-1)
● (n=1〜∞) (-1)^(n+1)・(4n-2)/((4n-2)^2+1)^2
= (π^2/4){e^(15π/4)+e^(11π/4)-e^(13π/4)-e^(9π/4)}/(e^(2π)-1)^2
+ (π^2/32){5e^(5π/4)+e^(π/4)-7e^(7π/4)-3e^(3π/4)}/(e^(2π)-1)
● (n=1〜∞) (-1)^(n+1){1/((4n-3)^2+1)^2 - 1/((4n-1)^2+1)^2}
=(π/(4√2)){e^(7π/4)+e^(π/4)-e^(5π/4)-e^(3π/4)}/(e^(2π)-1)
+ (π^2/(2√2)){e^(15π/4)+e^(9π/4)-e^(13π/4)-e^(11π/4)}/(e^(2π)-1)^2
+ (π^2/(16√2)){3e^(3π/4)+5e^(5π/4)-7e^(7π/4)-e^(π/4)}/(e^(2π)-1)
● (n=1〜∞) (-1)^(n+1)/((4n)^2+1)^2
=1/2 - (π/8){e^(7π/4)+e^(5π/4)+e^(3π/4)+e^(π/4)}/(e^(2π)-1)
+ (π^2/32){7e^(7π/4)+5e^(5π/4)+3e^(3π/4)+e^(π/4)}/(e^(2π)-1)
- (π^2/4){e^(15π/4)+e^(13π/4)+e^(11π/4)+e^(9/4)}/(e^(2π)-1)^2
|